A Stochastic Approach for Modelling Airborne Lidar Waveforms

نویسندگان

  • Clément Mallet
  • Florent Lafarge
  • Frédéric Bretar
  • Michel Roux
  • Uwe Soergel
  • Christian Heipke
چکیده

In contrast to conventional airborne multi-echo laser scanner systems, full-waveform (FW) lidar systems are able to record the entire emitted and backscattered signals of each laser pulse. Instead of clouds of individual 3D points, FW devices provide 1D profiles of the 3D scene, which allows gaining additional and more detailed observations of the illuminated surfaces. Indeed, lidar waveforms are signals consisting of a train of echoes where each of them corresponds to a scattering target of the Earth surface or a group of close objects leading to superimposed signals. Modelling these echoes with the appropriate parametric function is necessary to retrieve physical information about these objects and characterize their properties. Henceforth, the extracted parameters can be useful for subsequent object segmentation and/or classification. This paper presents a stochastic based model to reconstruct lidar waveforms in terms of a set of parametric functions. The model takes into account both a data term which measures the coherence between the proposed configurations and the waveforms, and a regularizing term which introduces physical knowledge on the reconstructed signal. We search for the best configuration of functions by performing a Reversible Jump Markov Chain Monte Carlo sampler coupled with a stochastic relaxation. Finally, the algorithm is validated on waveforms from several airborne lidar sensors, showing the suitability of the approach even when the traditional assumption of Gaussian decomposition of waveforms is invalid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area

Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...

متن کامل

Analysis of Full-waveform Lidar Data for Classification of Urban Areas

In contrast to conventional airborne multi-echo laser scanner systems, full-waveform (FW) lidar systems are able to record the entire emitted and backscattered signal of each laser pulse. Instead of clouds of individual 3D points, FW devices provide connected 1D profiles of the 3D scene, which contain more detailed and additional information about the structure of the illuminated surfaces. This...

متن کامل

Stability and Scalability Assessment of Complexity Estimation Based Work Load Balancing Approach for a Parallel Lidar Waveform Decomposition Algorithm

LIDAR is an active remote sensing technology which performs range measurements from the sensor and converts them into 3D coordinates of the Earth's surface. Recent advances in LIDAR hardware make it possible to digitize full waveforms of the returned energy. LIDAR waveform decomposition involves separating the return waveform into a mixture of Gaussians which is then used to characterize the or...

متن کامل

An Improved Quadrilateral Fitting Algorithm for the Water Column Contribution in Airborne Bathymetric Lidar Waveforms

In this paper, an improved method based on a mixture of Gaussian and quadrilateral functions is presented to process airborne bathymetric LiDAR waveforms. In the presented method, the LiDAR waveform is fitted to a combination of three functions: one Gaussian function for the water surface contribution, another Gaussian function for the water bottom contribution, and a new quadrilateral function...

متن کامل

Modeling lidar waveforms with time-dependent stochastic radiative transfer theory for remote estimations of forest structure

[1] Large footprint waveform-recording laser altimeters (lidars) have demonstrated a potential for accurate remote sensing of forest biomass and structure, important for regional and global climate studies. Currently, radiative transfer analyses of lidar data are based on the simplifying assumption that only single scattering contributes to the return signal, which may lead to errors in the mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012